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PARALLEL PARTITIONING STRATEGIES FOR THE 
ADAPTIVE SOLUTION OF CONSERVATION LAWS * 

KAREN D. DEVINEt, JOSEPH E. FLAHERTY», RAYMOND M. LOY*    AND 

STEPHEN R. WHEATS 

Abstract. We describe and examine the performance of adaptive methods for solv- 
ing hyperbolic systems of conservation laws on massively parallel computers. The differ- 
ential system is approximated by a discontinuous Galerkin finite element method with a 
hierarchical Legendre piecewise polynomial basis for the spatial discretization. Fluxes at 
element boundaries are computed by solving an approximate Riemann problem; a pro- 
jection limiter is applied to keep the average solution monotone; time discretization is 
performed by Runge-Kutta integration; and a p-refinement-based error estimate is used 
as an enrichment indicator. Adaptive order (p-) and mesh (h-) refinement algorithms are 
presented and demonstrated. Using an element-based dynamic load balancing algorithm 
called tiling and adaptive p-refinement, parallel efficiencies of over 60% are achieved on 
a 1024-processor nCUBE/2 hypercube. We also demonstrate a fast, tree-based parallel 
partitioning strategy for three-dimensional octree-structured meshes. This method pro- 
duces partition quality comparable to recursive spectral bisection at a greatly reduced 
cost. 

Key words. Adaptive methods, hyperbolic systems of conservation laws, massively 
parallel computation, Galerkin finite element method, h-refinement, p-refinement, load 
balancing, tiling, domain decomposition, octree-derived meshes. 

AMS(MOS) subject classifications. 65M20, 65M50, 65M60. 

1. Introduction. Adaptive finite difference and finite element meth- 
ods, which automatically refine or coarsen meshes and vary the order 
of accuracy of the numerical solution, offer greater robustness and com- 
putational efficiency than traditional methods. High-order methods and 
the combination of mesh refinement and order variation (Ap-refinement) 
have been shown to produce effective solution techniques for elliptic [7,28] 
and parabolic [2,3,10,26] problems. With few exceptions [11,16], work on 
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adaptive methods for hyperbolic systems has concentrated on /i-refinement 
[5,8,12]. 

Distributed-memory, massively parallel computers have enabled the 
development of applications requiring computational resources previously 
unavailable. Finite difference and finite element methods for structural 
mechanics and fluid dynamics problems, for example, often require mil- 
lions of degrees of freedom to accurately simulate physical phenomenon. 
When solving partial differential equations (PDEs) on MIMD computers, 
spatial data must be distributed across the processors' memory while min- 
imizing the amount of data that must be exchanged between processors. 
This problem is especially acute when dealing with (i) adaptive methods, 
where mesh structure and work loads change during the computation, and 
(n) three-dimensional meshes, whose data grow at a faster rate than in two- 
dimensions when performing /i-refinement. The challenge is to combine the 
computational efficiency of adaptive methods with the computational re- 
sources of massively parallel computation. 

We consider systems of (/-dimensional hyperbolic conservation laws in 
m variables having the form 

d 

(1.1a) ut(x,t) + J2{i(x>t>u)*i=°>   xGfi>   t>0' 

with the initial conditions 

(1.1b) u(x, 0) = u°(x),    xSfiUdfi, 

and appropriate well-posed boundary conditions. The subscripts t and 
X{, i = 1,2,..., d, denote partial differentiation with respect to time and 
the spatial coordinates, and u, u°, and f,, i = 1,2, ...,d, are m-vectors 
on the problem domain fi x (t > 0). Finite difference schemes for (1.1), 
such as the Total Variation Diminishing (TVD) [33,36] and Essentially 
Non-Oscillatory (ENO) [31] methods, usually achieve high-order accuracy 
by using a computational stencil that enlarges with order. A wide sten- 
cil makes the methods difficult to implement on unstructured meshes and 
limits efficient implementation on massively parallel computers. Finite ele- 
ment methods, however, have stencils that are invariant with method order, 
allowing them to easily model problems with complicated geometries and 
to be efficiently parallelized. 

We use a discontinuous Galerkin finite element method [11,13,14] where 
the spatial approximation is continuous within an element, but may be 
discontinuous at interelement boundaries to accommodate solution discon- 
tinuities more accurately. Fluxes at element boundaries are computed by 
solving an approximate Riemann problem with a projection limiter applied 
to keep the average solution monotone near discontinuities [11,14,36]. Time 
discretization is performed by an explicit Runge-Kutta method. 



The discontinuous Galerkin method is well suited to parallelization 
on massively parallel computers. The computational stencil involves only 
nearest-neighbor communication regardless of the degree of the piecewise 
polynomial approximation and the spatial dimension. Additional storage is 
needed for only one row of "ghost" elements along each edge of a processor's 
subdomain. Thus, the size of the problem scales easily with the number of 
processors. Indeed, for two-dimensional problems on rectangular domains 
with periodic boundary conditions, scaled parallel efficiencies in excess of 
97% are achieved [11]. 

To achieve parallel efficiency with irregular structures, parallel finite 
element methods often use static load balancing [19,21] as a precursor to 
obtaining a finite element solution. Parallel efficiency degrades substan- 
tially due to processor load imbalances with adaptive enrichment. Even 
with the lower parallel efficiency, however, execution times for comparable 
accuracy are shorter with adaptive methods than for fixed-order methods. 

We have developed an adaptive p-refinement method for two-dimen- 
sional systems that uses dynamic load balancing to adjust the processor 
decomposition in the presence of nonuniform and changing work loads. 
Tiling [37] is a modification of a dynamic load balancing technique devel- 
oped by Leiss and Reddy [24] that balances work within overlapping pro- 
cessor neighborhoods to achieve a global load balance. Work is migrated 
from a processor to others within the same neighborhood. We demonstrate 
the improved performance obtained from a combination of p-adaptivity and 
parallel computation on several examples using a 1024-processor nCUBE/2 
hypercube. 

For three-dimensional problems with irregular grids of tetrahedral ele- 
ments and adaptive h-refinement, we have developed a tree-based mesh par- 
titioning technique that exploits the properties of tree-structured meshes. 
The rich, hierarchical structure of these meshes allows them to be divided 
into components along boundaries of the tree structure. Our partitioning 
technique is based on two tree traversals that (i) calculate the processing 
costs of all subtrees of a node, and (n) form the partitions. Our method 
is inexpensive and, thus, has an advantage relative to other global par- 
titioning techniques [21,23,27]. We demonstrate the performance of the 
tree-based mesh partitioning technique on a variety of three-dimensional 
meshes and discuss extension of the technique for parallel implementation 
and dynamic load balancing. We present results, using a Thinking Ma- 
chines CM-5 computer, for the adaptive /»-refinement solutions of an Euler 
flow past a cone. 

2. The Discontinuous Galerkin Method. Partition the domain 
ß into polygonal elements Qj, j = 1,2,..., J, and construct a weak form 
of the problem by multiplying (1.1a) by a test function v G L2{Q.j) and 
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= 0. 

integrating the result on fij to obtain 

(2.1) /   vTntdr + T    [ (vT{i(u))Xtdr-  f  vj.fi(u)dr 
Jilj t = 1  [Jilt JClj 

Apply the Divergence Theorem to (2.1) to obtain 

(2.2) /  vTutdr-T[  vlM")dr + Y,f    vTfi(u)n,d<r = 0, 
Jcij i=1 Jcij i=1 Jan, 

where n = ["i, "2, • • • > nd]T is the unit outward normal to öß;-. Approx- 
imate u(x,2) on Qj by a p^-degree polynomial Uj(x,t) € Sj C -L2(fl,), 
and test against all functions V G Sj. With initial conditions determined 
by local L2 projection, this approximation yields the ordinary differential 
system 

(2.3a)    /  VT(U,-)«dr   -    T I  Vj^U^dr 

d    t 
+   V /     VTf,(Uj)n,cf<T = 0,   t>0, 

(2.3b) /  VT(UJ' - u°) dr = 0,   * = 0,   WeS;, 

which we solve on Qj, j = 1,2,...,/, by explicit Runge-Kutta integra- 
tion of order p. Integrals are evaluated numerically using Gauss-Legendre 
quadrature. A basis for the local space Sj may be denned using prod- 
ucts of one-dimensional Legendre polynomials, as distinct from hierarchical 
bases for elliptic and parabolic systems [34] which use integrals of Legendre 
polynomials. Two-dimensional bases involving tensor products of Legen- 
dre polynomials have been constructed for quadrilateral [11] and triangu- 
lar [15] elements. A three-dimensional basis for tetrahedral elements could 
follow procedures developed for elliptic systems [34]. Results presented in 
Section 5 for tetrahedral-element meshes involve only piecewise constant 
approximations. 

The normal component of the flux 

d 

(2.4) fn(u) = ^f,(u)ni 

«=i 

remains unspecified on dSlj with (2.3) since the approximate solution 
is discontinuous there. We specify it using a "numerical flux" function 
h(U+,UJ) dependent on solution states U* and UJ" on the inside and 

4 



outside, respectively, of <9fi;-. Several numerical flux functions are possi- 
ble [14,31]. In two dimensions [11,15], we have used the Lax-Friedrichs 
numerical flux, 

(2.5a)       h(Ut, U-) = |[fn(Ut) + fn(U;) - |a|(U- - U+)], 

(2.5b) a = max(|A(fnu(U;))|),     Uf < Uj < Uf, 

where A(fnu) is an eigenvalue of the Jacobian fnu- 
In three dimensions, we use van Leer's flux vector splitting [25,35] to 

construct a numerical flux. This technique is not generally applicable but 
does apply to the Euler equations of compressible flow which have the 
solution and flux vectors 

(2.6) 

u' = [p,pu',pv',pw',e]T, 
fi(u') = [pu',pu12+ p,pu'v',pu'w',u'(e+p)]   , 
f2(u') = [pv',pu'v',pv'2+p,pv'w',v'(e+p)]    , 

f3(u') = [pw',pu'w',pv'w',pw'2+p,w'(e+p)]   , 

where p, e, and p are the density, energy, and pressure; u' is the velocity 
component in the direction of n; and v' and w' are velocity components 
tangent to dtlj. The numerical flux h on dQj is computed as 

(2.7a) 

where 

(2.7b) 

h(u;-,u;+) = f+(u;.+)+f1-(u;.-) 

f+(U')   ='f!(U'),   ff(U')   =   o, 
f+(U')   =   o, 

if M' > 1; 
ff(U')    =   f!(U'),    if M' < -1; 

f±(U') = ±p2i^i£ 

1 
a[(j-l)M'±2]/j 

w' 
a3[(j-l)M'±2Y 

2(7
ä-l) + ' 

if   \M'\ < 1. 

(2.7c) 
where M' — U'/a, and a is the local speed of sound. Van Leer's numerical 
flux has the property that the two components of the normal flux, ff and 
ff, depend only on the solution on the same side of dtlj. Therefore, the flux 
may be calculated by computing each component separately, exchanging 
ff and ff between elements, and summing. This splitting approximately 
halves the computational and parallel communications effort relative to 
other flux evaluation schemes. 



In regions where the numerical solution is smooth, the discontinuous 
Galerkin method produces the 0(hp+1), h = max^i^,...,^ ;=i,2,...,j(Ax,J), 
convergence expected in, e.g., L1 for a p(A-degree approximation [11,14]. 
To prevent spurious oscillations that develop near discontinuities with high- 
order methods, we have developed a projection limiter that limits solution 
moments [11,14,36]. Using a one-dimensional (d = 1) scalar problem and 
the Legendre polynomial basis 

(2.8) £>;«.*) = I>,(*)fl(0 
1=0 

as an illustration, the coefficient Cjk is proportional to the kth moment Mjk 
oiUj\ i.e., 

(2.9) 
Mjk := J_m,t)Pk{t)di=y^-iCjk, 

4 = 0,1,....P-l,   j = l,2,...,J. 

Thus, to keep Mjk monotone, we must keep Cjk monotone on neighboring 
elements, which we do by specifying 

(2k + l)ciit+i = 

(2.10a) minmod((2k + l)cj:k+i,cj+itk -Cj,k,Cjik -Cj-i,*), 

where 

minmod(a, b, c) = 

(2 10b)      { sign(a) mindal' l6l> lcD>      if    siSn(a) = siSnW = sign(c) 
^ '      ^0, otherwise. 

The limiter (2.10) is applied adaptively. First, the highest-order coeffi- 
cient CjP is limited. Then the limiter is applied to successively lower-order 
coefficients whenever the next higher coefficient on the interval has been 
changed by the limiting. The higher-order coefficients are re-limited using 
the updated low-order coefficients when necessary. In this way, the limit- 
ing is applied only where it is needed, and accuracy is retained in smooth 
regions. For two- and three-dimensional problems, the one-dimensional 
limiter is applied in the direction n normal to ddj. 

For vector systems, the scalar limiting is applied to the characteristic 
fields of the system [13]. The diagonalizing matrices T(u) and T-1(u) 
(consisting of the right and left eigenvectors of the Jacobian fnu) are eval- 
uated using the average values of Uj, j = 1,2,..., J, on Q;-; the scalar 
limiting is applied to each field of the characteristic vector; and the result 
is transformed back to physical space by post-multiplication by T-1(U;). 
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3. Adaptive p-Refinement. We have developed an adaptive p-re- 
finement version of the two-dimensional method (2.3, 2.5, 2.10) using rect- 
angular grids and a method-of-lines framework. A spatial error estimate is 
used to control order variation procedures that attempt to keep 

j 

(3.1a) e(t) = £>(')<£. 

where e is prescribed and 

(3.1b) ej(t) = \\f   lufoO-U^OIdT-Hoo. 
Ja, 

Control is done locally with a goal of maintaining 

(3.2) ej(t)<TOL = j,   j = 1,2,..., J. 

We initialize U;-(x, 0), j = 1,2,..., J, to the lowest-degree polynomial sat- 
isfying (3.2) at t = 0. For times t > 0, we use p-refinement to calculate an 
estimate Ej (t) of ej as 

(3.3) £; = ll/   |U$+1-U$|dr|U   j = l,2,...,J, 

where U? is the p'A-degree finite element approximation of u. While this 
estimate is computationally expensive, it is still less expensive than h- 
refinement (Richardson's extrapolation) techniques and can be used to re- 
duce the effort involved in recomputing Uj and its error estimate when 
p-refinement is needed. 

A less expensive error estimation procedure similar to successful proce- 
dures for elliptic and parabolic systems [4,6] can be obtained by the (p+l)st- 
degree polynomial correction to a ptA-degree solution while making use of 
superconvergence to reduce complexity. We construct a (p + l)'*-degree 
correction term K;(x,t) whose roots are the superconvergence points of 
the approximation, and then estimate ej as 

(3.4a) Ej(t) = \\f   IK^x.OKrlloo,   j = l,2,...,J. 

For p = 0, the superconvergence points remain at the Legendre roots, but 
for p > 0, the superconvergence points move toward the Radau points 
[1,11], i.e., the roots of 



as t increases. Then, for a two-dimensional approximation using a basis of 
tensor products of Legendre polynomials on rectangular elements, 

'  cjn(t)Pi{OPi(ri) 
+Cjio(i)Pi(OW 
+cm(t)Po(OPi(v), ifp = 0 

(3.4c)   Kj(£,ri,t)={   CjiP+1,p+1(t)Rp+l(ORP+i(ri) 
p 

~+cjJ,+1,i(t)Rp+i{t)Pk(ri)),   if P > 0. 

To compute K; (x, t), let U;- = Uj + Kj, j = 1,2,..., J, substitute Üj into 
(2.3), and solve for the coefficients of K,(x,t) with Uj fixed. 

To compute Ej using (3.4), we solve 2p + 3 additional ordinary dif- 
ferential equations in two dimensions, compared to an additional (p + 2)2 

differential equations required for (3.3). The movement of the superconver- 
gence points from the Legendre points at t = 0 toward the Radau points 
for t > 0 is gradual, occurring over several time steps [11]. Thus, the 
effectiveness of the estimate improves as the computation progresses. 

After each time step, we compute Ej, j = 1,2,..., J, and increase the 
polynomial degree of Uj by one if Ej > TOL. The solution Uj and the 
error estimate are recomputed on enriched elements, and further increases 
of degree occur until Ej < TOL on all elements. 

We reduce the need for back-tracking by predicting the degree of the 
approximation needed to satisfy the accuracy requirements during the next 
time step. After a time step is accepted, if Ej > HmaxTOL, Hmax € (0,1], 
we increase the degree of Uj(x,t + At) for the next time step. If Ej < 
HminTOL, Hmin £ [0,1), we decrease the degree of U;(x,< + At) for the 
next time step. 

EXAMPLE 1. We demonstrate the accuracy of the error estimate (3.4) 
in terms of its effectivity index 

_ Estimated Error 
^  ' Actual Error 

for the two-dimensional problem 

(3.6a) ut + ux + uy = 0,    -Kx,y<l,   t> 0, 

with 

(3.6b) u°(x,y) = sin(Trx)sm(Ty),    -1 < x,y < 1, 

and periodic boundary conditions. In Table 3.1, we show the actual errors 
and effectivity indices with p = 0,1, and 2. Each time the mesh is refined, 
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the time step is halved, and the number of time steps is doubled. Effectivity 
indices are near unity for the entire range of computation when p = 0. For 
p — 1 and 2, the error estimate improves as the mesh is refined since the 
superconvergence points move closer to the Radau points after each time 
step. 

Number of Actual 
Elements Error e 

p = 0 16 x 16 2.66838e- 1 0.967 
32x32 1.33946e- 1 0.969 
64x64 6.70306e-2 0.973 

128 x 128 3.35206e-2 0.976 
256 x 256 1.67605e-2 0.978 

p = l 16 x 16 1.45948c-2 0.540 
32x32 4.21090e-3 0.805 
64x64 1.11300c-3 0.975 

128 x 128 2.79793e-4 1.000 
256 x 256 6.99557e - 5 1.000 

p = 2 16 x 16 6.41413e-4 0.557 
32x32 9.68358e-5 0.646 
64x64 9.68224e - 6 1.128 

128 x 128 1.26721c-6 1.009 
256 x 256 1.58712e-7 1.000 
512x512 1.98384c-8 1.000 

TABLE 3.1 
Errors and effectivity indices 0 at t = 0.025 using (3.4) for Example 1. 

EXAMPLE 2. Consider 

(3.7a) ut + 1ux + 2uy = 0,    0<x,y<l,   t > 0, 

with initial and Dirichlet boundary conditions specified so that the exact 
solution is 

(3.7b) u(x, y, t) = i(l - tanh(20z - lOy - 20* + 5)),   0 < x, y < 1. 

In Figure 3.1, we show the exact solution of (3.7) at time t = 0 and the 
degrees generated on a adaptive 16 x 16-element mesh to satisfy the initial 
data when TOL = 10-5. 

We solve (3.7) by both fixed-order and adaptive p-refinement methods 
on 0 < t < 0.1. In Figure 3.2, we show the global L1-error versus the 
CPU time for fixed-order methods with p = 0, 1, and 2 on 8 x 8, 16 x 16, 
32 x 32, and 64 x 64-element meshes, and the p-adaptive method with 
Hmax = 0.9, Hmin = 0.1, and TOL ranging from 5 x 10~9 to 5 x 10~4 on 
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FIG. 3.1.  Exact solution of (3.7) at t = 0 and degrees generated on a 16 X 16-element 
mesh with TOL = 10_5/or£xamp/e 2. 

a 16 x 16-element mesh. The adaptive p-refinement method requires more 
computation than the fixed-order methods for large error tolerances, but 
because of its increasing convergence rate, it requires less work than the 
fixed-order methods to obtain small errors. 

4. Dynamic Load Balancing via Tiling. Tiling [37,38] is a modi- 
fication of the global load balancing technique of Leiss and Reddy [24,29] 
who used local balancing within overlapping processor neighborhoods to 
achieve a global load balance. A neighborhood is defined as a processor 
at the center of a circle of some predefined radius and all other processors 
within the circle. Processors within a given neighborhood are balanced 
with respect to each other using local performance measurements. Individ- 
ual processors may belong to several neighborhoods. Work can be migrated 
from a processor to any other processor within the same neighborhood. In 
tiling, we extend the definition of a neighborhood to include all processors 
having finite elements that are neighbors of elements in the center proces- 
sor (see Figure 4.1). Tiling neighborhoods are not related to the hardware 
interconnection of the processors as were the neighborhoods of Leiss and 
Reddy [24]. Every processor is the center of one neighborhood, and may 
belong to many neighborhoods. Elements are migrated only to processors 
having neighbors of the migrating elements. 

The tiling algorithm consists of (i) a computation phase and (it) a bal- 
ancing phase, and is designed to be independent of the application. The 
computation phase corresponds to the application's implementation with- 
out load balancing. Each processor operates on its local data, exchanges 
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FlG. 3.2.   Convergence of the adaptive p-refinement method and fixed-order methods 
with p = 0,1,   and 2 for Example 2. 

inter-processor boundary data, and processes the boundary data. A bal- 
ancing phase restores load balance following a given number of computation 
phases. Each balancing phase consists of the following operations: 

1. Determine work loads. Each processor determines its work load 
as the time to process its local data since the previous balancing 
phase less the time to exchange inter-processor boundary data dur- 
ing the computation phase. Neighborhood average work loads are 
also calculated. 

2. Determine processor work requests. Each processor com- 
pares its work load to the work load of the other processors in its 
neighborhood and determines those processors having loads greater 
than its own. If any are found, it selects the one with the greatest 
work load (ties are broken arbitrarily) and sends a request for work 
to that processor. Each processor may send only one work request, 
but a single processor may receive several work requests. 

3. Select elements to satisfy work requests. Each processor pri- 
oritizes the work requests it receives based on the request size, and 
determines which elements to export to the requesting processor. 
Elemental processing costs are used so that the minimum num- 
ber of elements satisfying the work request are exported. (This 
approach differs from Wheat [37], where the average cost per ele- 
ment is used to determine the number of export elements). Details 
of the selection algorithm follow. 

4. Notify and transfer elements. Once elements to be exported 
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FlG. 4.1.  Examples of 12 processors in 12 neighborhoods using the Leiss/Reddy[24,29] 
(left) and the tiling (right) definitions. 

.have been selected, the importing processors and processors con- 
taining neighbors of the exported elements are notified. Importing 
processors allocate space for the incoming elements, and the ele- 
ments are transferred. 

Each processor knows the number of computation phases to perform 
before entering the balancing phase.  Synchronization guarantees that all 
processors enter the balancing phase at the same time. 

The technique for selecting elements gives priority to elements with 
neighbors in the importing processor to prevent the creation of "narrow, 
deep holes" in the element structures. Elements are assigned priorities 
(initially zero) based upon the locality of their element neighbors. An 
element's priority is decreased by one for each element neighbor in its own 
processor, increased by two for each neighbor in the importing processor, 
and decreased by two for each neighbor in some other processor. Thus, 
elements whose neighbors are already in the importing processor are more 
likely to be exported to that processor than elements whose neighbors are 
in the exporting processor or some other processor. When an element has 
no neighboring elements in its local processor, it is advantageous to export 
it to any processor having its neighbors. Thus, "orphaned" elements are 
given the highest export priority. When two or more elements have the 
same priority, the processor selects the element with the largest work load 
that does not cause the exported work to exceed the work request or the 
work available for export. 

In Figure 4.2, we illustrate an example of element priorities and se- 
lection for satisfying a work request of 55 units from the east neighboring 
processor. Initially, elements 3, 6, 9, and 12 are eligible for export. Their 
priorities are computed; element 3, for example, has priority -2, since it 
has two local neighbors (-2), one neighbor in the importing processor (+2), 
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and one neighbor in some other processor (-2). Elements 6 and 9 share 
the highest priority, but element 6 is selected because it has a greater work 
load. Element 5 becomes eligible for export, but its priority is low since 
it has three local neighbors. The priorities are adjusted, and element 9 is 
selected, making element 8 a candidate. The priorities are again updated, 
and the selection process continues with elements 3 and 12 being selected. 
Although the work request is not completely satisfied, no other elements 
are exported, since the work loads of the elements with the highest priority, 
5 and 8, are greater than the remaining work request. 

EXAMPLE 3. We solve (3.7) with a fixed-order method (p = 3) on a 
32 x 32-element mesh and tiling on 16 processors of the nCUBE/2 hyper- 
cube. In Figure 4.3 (left), we show the processor domain decomposition 
after 20 time steps. The tiling algorithm redistributes the work so that pro- 
cessors containing elements on the domain boundary have fewer elements 
than those in the interior of the domain. The global error of the numerical 
solution is 4.76766 x 10-3. The total processing time was reduced by 5.18% 
from 128.86 seconds to 122.18 seconds by balancing once each time step. 
The average/maximum processor work ratio without balancing is 0.858; 
with balancing, it is 0.942. Parallel efficiency is increased from 90.80% 
without balancing to 95.58% with tiling. 

We then solve (3.7) using the adaptive p-refinement method on a 
32 x 32-element mesh with TOL = 3.5 x 10-5 and tiling on 16 proces- 
sors. In Figure 4.3 (right), we show the processor domain decomposition 
after 20 time steps. The shaded elements have higher-degree approxima- 
tions and, thus, higher work loads. The tiling algorithm redistributes the 
work so that processors with high-order elements have fewer elements than 
those processors with low-order elements. The global error of the adaptive 
solution is 4.44426 x 10-3, less than the fixed-order method above. The 
total processing time for the adaptive method was reduced 41.98% from 
63.94 seconds to 37.10 seconds by balancing once each time step. The av- 
erage/maximum processor work ratio without balancing is 0.362, and with 
balancing, it is 0.695. Parallel efficiency is increased from 35.10% without 
balancing to 60.51% with tiling. 

EXAMPLE 4. We solve (3.7) for 225 time steps on all 1024 processors of 
the nCUBE/2 without balancing and with balancing once each time step. 
A fixed-order method with p — 2 produces a solution with global error 
6.40644 x 10~2. Using the tiling algorithm reduced the total execution 
time 6.25% from 1601.96 seconds without balancing to 1501.90 seconds 
with balancing (see Table 4.1). Parallel efficiency without balancing was 
82.7%; with balancing, it was 88.2%. 

The adaptive p-refinement method produced a solution with global 
error 6.32205 x 10-2, comparable to the fixed-order solution. With bal- 
ancing, the maximum computation time (not including communication or 
balancing time) was reduced by 49.8% (see Table 4.1). The irregular sub- 
domain boundaries created by the tiling algorithm increased the average 
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1      work: 25 2    work: 41 3    work: 25 
priority: »2 

4     work: 41 5   work: 41 S   work: 13 
priority: -1 

7     work: 41 Q   work: 13 9 ) work: 5 
"~T>rJority: «1 

10     work: 13 11    work: 5 12 j work: 5 
priority: -2 

Elements 3, 6, 9, and 12 are eligible for export. Initial work request = 55. 

1     work: 25 2    work: 41 3    work: 25 | 
priority: 1  1 

4     work: 41 5   work: 41 
priority: «1 

7     work: 41 8   work: 13 9    work: 5 
priority: 2 

10     work: 13 11    work: 5 12 ] work: 5 
priority: -2 

6 work: 13 

Elemente is selected for export and 5 becomes an export candidate. 
Work request - 42. 

1     work: 25 2    work: 41 3 | work: 25 1 
priority: 1  1 

4     work: 41 5   work; 41 
priority: -1 

7     work: 41 8   work: 13 
priority: -l 

10     work: 13 11    work: 5 12 | work: 5   1 
priority: 1 1 

6 work: 13 

9 work: 5 

After second selection, work request = 37. 

1     work: 25 2   work: 41 
priority: -2 

4     work: 41 5 J work: 41 
priority: -1 

7     work: 41 Bj work: 13 
—-priority: -1 

10     work: 13 11 | work: 5 12    work: 5 
priority: 1 1 

3 work: 25 

6 work: 13 

9 work: 5 

After third selection, work request = 12. 

1     work: 25 2   work: 41 
priority: -2 

4     work: 41 
 ' 

5   work: 41 
priority: -1 

7     work: 41 8 1 work: 13 
—priority: -1 

10     work: 13 11 I work: 5 
—priority: -2 

3 work: 25 

6 work: 13 

9 work: 5 

12 work: 5 

After fourth selection, work request = 7; no other elements are exported. 

FIG. 4.2. Example of element priorities and the export element selection algorithm. 
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FlG. 4.3. Processor domain decompositions after 20 time steps for Example 3 using 
fixed-order (left) and adaptive order (right) methods. Dark lines represent processor 
subdomain boundaries. 

communication time by 2.5%. Despite the extra communication time and 
the load balancing time, however, we see a 36.3% improvement in the total 
execution time. 

In Figure 4.4, we show the maximum processing costs per time step, in- 
cluding the computation and balancing times, for the adaptive p-refmement 
method. The dashed and solid lines represent the maximum cost without 
and with balancing, respectively. The balanced computation's maximum 
cost per time step is significantly lower than without balancing. The spikes 
in both curves occur when the error tolerance was not satisfied on some 
elements and the adaptive p-refinement method back-tracked to compute 
a more accurate solution. In Figure 4.5, we show the cumulative maxi- 
mum processing times with and without balancing. The immediate and 
sustained improvement of the application's performance is shown. 
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FIG. 4.4.   Maximum work load during each time step for Example 4 with (solid line) 
and without (dashed line) balancing. 
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FlG. 4.5.    Cumulative maximum loads for Example 4 with (solid line) and without 
(dashed line) balancing. 
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Fixed-Order (p=2) 
Global Error: 0.06406 

Adaptive p-refinement 
Global Error: 0.06322 

Without 
Tiling 

With 
Tiling 

Without 
Tiling 

With 
Tiling 

Total Execution 
Time (seconds) 1601.96 1501.90 858.50 546.75 

Max. Computation 
Time (seconds) 1549.77 1429.24 782.93 393.32 

Average/Maximum 
Work Ratio 0.855 0.927 0.427 0.851 

Avg. Communication 
Time (seconds) 59.09 59.09 70.85 72.65 
Max. Balancing 
Time (seconds) 0.0 20.88 0.0 23.46 

Parallel 
Efficiency 82.7% 88.2% 38.98% 61.21% 

Performance comparison jo 
and with balancing at each 

TABLE 4.1 
r Example 4 using fixed-order and adaptive methods without 
time step. 

5. Three-Dimensional Mesh Partitioning. We describe a tree- 
based partitioning technique which utilizes the hierarchical structure of 
octree-derived unstructured meshes to distribute elemental data across pro- 
cessors' memories while reducing the amount of data that must be ex- 
changed between processors. An octree-based mesh generator [30] recur- 
sively subdivides an embedding of the problem domain in a cubic universe 
into eight octants wherever more resolution is required. Octant bisection 
is initially based on geometric features of the domain but solution-based 
criteria are introduced during an adaptive /i-refinement process. Finite 
element meshes of tetrahedral elements are generated from the octree by 
subdividing terminal octants. 

In Figure 5.1, we illustrate the tree and mesh for a two-dimensional 
flow domain containing a small object. The root of the tree represents 
the entire domain (Figure 5.1c). The domain is recursively quartered until 
an adequate resolution of the object is obtained (Figure 5.1a). A smooth 
gradation is maintained by enforcing a one-level maximum difference be- 
tween adjacent quadrants. After appropriate resolution is obtained, leaf 
quadrants are subdivided into triangular elements that are pointed to by 
leaf nodes of the tree (Figures 5.1b,c). The leaf quadrant containing the 
object must be decomposed into triangles based on the geometry of the 
object boundary. Smoothing, which normally follows element creation, is 
not shown. 

Our tree-based based partitioning algorithm creates a one-dimensional 
ordering of the octree and divides it into nearly equal-sized segments based 
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FlG. 5.1. A quadtree representation of the flow field surrounding an object (a), division 
of terminal quadrants into triangular elements (b), and quadtree structure (c). 

on tree topology. The first step of the algorithm is the determination of 
cost metrics for all subtrees. Cost is currently defined as the number of 
elements within a subtree. For a leaf octant, this would simply be the 
number of tetrahedra associated with it. P-refinement would necessitate 
the inclusion of an element's order into the cost function. If the solution 
algorithm employs spatially-dependent time steps then, typically, a greater 
number of smaller time steps must be taken on smaller elements and this 
must also be reflected in the subtree cost. In any event, appropriate costs 
may be determined by a postorder traversal of the octree. 

The second phase of the partitioning algorithm uses the cost informa- 
tion to construct the actual partitions. Since the number of partitions is 
prescribed and the total cost is known from the first phase, we also know 
the optimal size of each partition. Partitions consist of a set of octants 
that are each the root of a subtree and are determined by a truncated 
depth-first search. Thus, octree nodes are visited in depth-first order, and 
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subtrees are accumulated into successive partitions. The subtree rooted 
at the visited node is added to the current partition if it fits. If it would 
exceed the optimal size of the current partition, a decision must be made 
as to whether it should be added, or whether the traversal should examine 
it further. In the latter case, the traversal continues with the offspring of 
the node and the subtree may be divided among two or more partitions. 
The decision on whether to add the subtree or examine it further is based 
on the amount by which the optimal partition size is exceeded. A small 
excess may not justify an extensive search and may be used to balance 
some other partition which is slightly undersized. When the excess at a 
node is too large to justify inclusion in the current partition, and the node 
is either terminal or sufficiently deep in the tree, the partition is closed and 
subsequent nodes are added to the next partition. 

This partitioning method requires storage for nonterminal nodes of the 
tree which would normally not be necessary since they contain no solution 
data. However, only minimal storage costs are incurred since information 
is only required for tree connectivity and the cost metric. For this modest 
investment, we have a partitioning algorithm that only requires 0( J) serial 
steps. 

Partitions formed by this procedure do not necessarily form a single 
connected component; however, the octree decomposition and the orderly 
tree traversal tend to group neighboring subtrees together. Furthermore, a 
single connected component is added to the partition whenever a subtree 
fits within the partition. 

A tree-partitioning example is illustrated in Figure 5.2. All subtree 
costs are determined by a post order traversal of the tree. The partition 
creation traversal starts at the root, Node 0 (Figure 5.2a). The node cur- 
rently under investigation is identified by a double circle. The cost of the 
root exceeds the optimal partition cost, so the traversal descends to Node 
1 (Figure 5.2b). As shown, the cost of the subtree rooted at node 1 is 
smaller than the optimal partition size and, hence, this subtree is added 
to the current partition, pO, and the traversal continues at Node 2 (Fig- 
ure 5.2c). The cost of the subtree rooted at Node 2 is too large to add 
to pO, so the algorithm descends to an offspring of Node 2 (Figure 5.2d). 
Assuming Node 4 fits in pO, the traversal continues with the next offspring 
of Node 2 (Figure 5.2e). Node 5 is a terminal node whose cost is larger 
than the available space in pO, so the decision is made to close pO and begin 
a new partition, pi. As shown (Figure 5.2f), Node 5 is very expensive, and 
when the traversal is continued at Node 3, pi must be closed and work 
continues with partition p2. 

The tree-traversal partitioning algorithm may easily be extended for 
use with a parallel adaptive environment. An initial partitioning is made 
using the serial algorithm described above. As the numerical solution ad- 
vances in time, h- and/or p-refinement introduces a load imbalance. To 
obtain a new partitioning, let each processor compute its subtree costs us- 
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FlG. 5.2. A tree ■partitioning example. The partition-creation traversal starts at the root 
(a). Nodes are visited and added to the current partition if their subtree fits (b). When 
a subtree is too large to fit (c), the traversal descends into the subtree (i). Alternatively, 
the partition is closed and work begins on a new partition (e). The process continues 
until the traversal is complete (}). 

ing the serial traversal algorithm within its domain. This step requires 
no interprocessor communication. An inexpensive parallel prefix operation 
may be performed on the processor-subtree totals to obtain a global cost 
structure. This information enables a processor to determine where its 
local tree traversal is located in the global traversal. 

Now, following the serial procedure, each processor may traverse its 
subtrees to create partitions. A processor determines the partition number 
to start working on based on the total cost of processors preceeding it. 
Each processor starts counting with this prefix cost and traverses its sub- 
trees adding the cost of each visited node to this value. Partitions end near 
cost mutiples of N/P, where N is the total cost and P is the number of 
processors. Exceeding a multiple of N/P during the traversal is analagous 
to exceeding the optimal partition size in the serial case and the same crite- 
ria may be used to determine where to end partitions. When all processors 
finish their traversals, each subtree (and its associated data) is assigned to 
a new partition and may be migrated to its new location. Migration may be 
done using global communication; however, on some architectures, it may 
be more efficient to move data via simultaneous processor shift operations. 
This linear communication pattern is made possible by the one-dimensional 
nature of the partition traversal. 

While the cost of computing the new partition is small, the cost of 
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FlG. 5.3. Iterative rebalancing of tree-based partitions. The subtree rooted at Node 4 
(a) has been shifted from pO to pi (b) to relieve a load imbalance. The new root of pi 
is Node 2, the common parent of Nodes 4 "-rid 5. 

data movement is likely to be high and it would be desirable to amor- 
tize this by tolerating small imbalances. A strategy to delay the need for 
complete repartitioning would simply shift partition boundaries, thus, mi- 
grating subtrees from a processor P„ to its neighbors P„_i and Pn+i- If, 
for example, processor Pn seeks to transfer cost m to Pn-i, it simply tra- 
verses its subtrees accumulating their costs until it reaches m. The nodes 
visited comprise a subtree which may be transferred to Pn-i and which is 
contiguous with the subtrees in Pn-i- Likewise, if Pn desires to transfer 
work to Pn+i, the reverse traversal could remove a subtree from the trail- 
ing part of Pn. Consider, as an example, the subtree rooted at Node 4 of 
Figure 5.3a and suppose that its cost has increased through refinement. In 
Figure 5.3b, we show how the partition boundary may be shifted to move 
the subtree rooted at Node 4 to partition pi. The amount of data to be 
moved from processor to processor may utilize a relaxation algorithm or 
the tiling procedure discussed in Section 4. 

EXAMPLE 5. Performance results obtained by applying the tree-based 
mesh partitioning algorithm to various three-dimensional irregular meshes 
are presented in Figure 5.4. The meshes were generated by the Finite Oc- 
tree mesh generator [30]. "Airplane" is a 182K-element mesh of the volume 
surrounding a simple airplane [17]. "Copter" is a 242K-element mesh of 
the body of a helicopter [17]. "Onera," "Onera2," and "Onera3" are 16K-, 
70K-, and 293K-element meshes, respectively, of the space surrounding a 
swept, untwisted Onera-M6 wing which has been refined to resolve a bow 
shock [18]. "Cone" is a 139K-element mesh of the space around a cone hav- 
ing a 10° half-angle and which also has been refined to resolve a shock. 

The quality of a partition has been measured as the percent of element 
faces lying on inter-partition boundaries relative to the total number of 
faces of the mesh. Graphs in Figure 5.4 display these percentages as a 
function of the optimal partition size. In all cases the cost variance between 
the partitions is very small (about as small as the maximum cost of a leaf 
octant). The proportion in Figure 5.4 is, in a sense, the total surface area 
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FlG. 5.4.   Performance of the tree partitioning algorithm on five meshes:  large-scale 
(top) and small-scale (bottom). 
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that partitions hold in common. Smaller ratios require less communication 
relative to the amount of local data access. This measure is closely related 
to the number of "cuts" that the partition creates [23,20,32]; however, we 
have chosen to normalize by the total number of faces in order to compare 
partition quality over a wide range of mesh sizes and number of partitions. 

In large scale (top) the data of Figure 5.4 show the expected behaviour 
that the interface proportion approaches zero as the partition size increases 
(due to the number of partitions approaching unity). Conversely, as the 
optimal partition size approaches unity (due to number of partitions ap- 
proaching the number of elements), the interface proportion goes to unity. 
Examination of the small scale (bottom) results reveals that the interface 
proportion is less than 12% when the partition size exceeds 1000 for these 
meshes. Interfaces drop to below 9% and 8%, respectively, for partition 
sizes of 2000 and 3000. This performance is comparable to recursive spec- 
tral bisection [22] but requires much less computation (O(J) as opposed to 
0{P) [27]). 

The best performance occurred with the helicopter mesh, which was 
the only mesh of a solid object (as opposed to a flow field surrounding 
an object). The solid can easily be cut along its major axis to produce 
partitions with small inter-partition boundaries, and was included for gen- 
erality. The lowest performance occurred with the cone mesh. This is most 
likely due to the model and shock region being conically shaped, which 
is somewhat at odds with the rectangular decomposition imposed by the 
octree. 

In general, inter-partition boundaries should be less than 10%, indi- 
cating partition sizes of 2000 or more. This minimum partition size is not 
an excessive constraint, since a typical three-dimensional problem employ- 
ing a two million-element mesh being solved on a 1024-processor computer 
would have about 2000 elements per processing element. 

Another measure of partition quality is the percent of a partition's ele- 
ment faces lying on inter-partition boundaries relative to the total number 
of faces in that partition. This number is, in a sense, the ratio of surface 
area to volume of a partition. For our example meshes, this measure was 
below 22% and 18%, respectively, for partition sizes of 1000 and 1500. 

EXAMPLE 6. In Figure 5.5 we show partitions of several meshes from 
Example 5. The partitions exhibit a blocked structure; however, several 
partitions of the airplane mesh appear to be made up of disconnected com- 
ponents. While this is possible, although unlikely, in this case the partitions 
appear to be disconnected because the display is a two-dimensional slice 
through the three-dimensional domain. 

EXAMPLE 7. In Figure 5.6 we show the pressure contours of a Mach 2 
Euler flow (1.1,2.6) past the "Cone" mesh of Example 5. The solution em- 
ploys van Leer's flux vector splitting (2.7) and was computed on a Thinking 
Machines CM-5 with 128 processors. Several iterations of A-refinement were 
required to yield this mesh. At each iteration, elements were marked with 
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FlG. 5.5.   The airplane mesh, and three refinements of the Onera M6 wing mesh, all 
divided into 32 partitions. Each color represents a different partition. 
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FIG. 5.6. Shock surface and pressure contours found when computing the Mach 2 flow 
past a cone having a half-angle of 10° (top). Partitions of the mesh into 16 (left) and 
St (right) pieces (bottom). Each color represents a different partition. 

25 



the desired tree level (either larger for refinement, or smaller for coarsen- 
ing), and a new global mesh created to satisfy these constraints. The shock 
surface and pressure contours are shown above; below are examples of how 
the mesh may be partitioned for 16 and 32 processor machines. Each color 
represents membership in a different partition (and, hence, residence on a 
different processor). 

6. Conclusion. We have demonstrated the effectiveness of adaptive 
methods for solving systems of hyperbolic conservation laws on massively 
parallel computers. Using a discontinuous Galerkin finite element method 
with projection limiting of moments of the solution within an element, we 
can model problems with discontinuities sharply without spurious oscil- 
lations. The discontinuous Galerkin method has a small computational 
stencil, enabling its efficient implementation on massively parallel comput- 
ers. Adaptive p- and A-refinement methods provide faster convergence than 
traditional methods, but their nonuniform work loads create load imbal- 
ance on parallel computers, reducing the parallel efficiency of the methods. 
We correct the load imbalance by using a dynamic load balancing technique 
called tiling that produces a global balance by performing local balancing 
within overlapping neighborhoods of processors. Using tiling and adaptive 
p-refinement, computation of a two-dimensional example required approxi- 
mately one-third as much time as a fixed-order computation with the same 
global accuracy. In three dimensions, we have demonstrated the effec- 
tiveness of a tree-based mesh partitioning algorithm for reducing parallel 
communication costs. This algorithm performs almost as well as recursive 
spectral bisection, but requires much less work to compute a partitioning. 

In future work, we will combine the adaptive h- and p-refinement tech- 
niques to obtain an adaptive /ip-refinement method that can optimize com- 
putational effort in both smooth and discontinuous solution regions. We 
will extend the tiling algorithm to incorporate the changing data structures 
required for /i-refinement, and experiment with load balancing strategies for 
adaptive ftp-refinement meshes. The tree-based partitioning algorithm will 
be extended to operate in parallel, and we will experiment with dynamic 
rebalancing strategies. 
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